Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
J Feline Med Surg ; 24(9): 905-933, 2022 09.
Article in English | MEDLINE | ID: covidwho-2283901

ABSTRACT

CLINICAL IMPORTANCE: Feline infectious peritonitis (FIP) is one of the most important infectious diseases and causes of death in cats; young cats less than 2 years of age are especially vulnerable. FIP is caused by a feline coronavirus (FCoV). It has been estimated that around 0.3% to 1.4% of feline deaths at veterinary institutions are caused by FIP. SCOPE: This document has been developed by a Task Force of experts in feline clinical medicine as the 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines to provide veterinarians with essential information to aid their ability to recognize cats presenting with FIP. TESTING AND INTERPRETATION: Nearly every small animal veterinary practitioner will see cases. FIP can be challenging to diagnose owing to the lack of pathognomonic clinical signs or laboratory changes, especially when no effusion is present. A good understanding of each diagnostic test's sensitivity, specificity, predictive value, likelihood ratio and diagnostic accuracy is important when building a case for FIP. Before proceeding with any diagnostic test or commercial laboratory profile, the clinician should be able to answer the questions of 'why this test?' and 'what do the results mean?' Ultimately, the approach to diagnosing FIP must be tailored to the specific presentation of the individual cat. RELEVANCE: Given that the disease is fatal when untreated, the ability to obtain a correct diagnosis is critical. The clinician must consider the individual patient's history, signalment and comprehensive physical examination findings when selecting diagnostic tests and sample types in order to build the index of suspicion 'brick by brick'. Research has demonstrated efficacy of new antivirals in FIP treatment, but these products are not legally available in many countries at this time. The Task Force encourages veterinarians to review the literature and stay informed on clinical trials and new drug approvals.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cat Diseases/diagnosis , Cat Diseases/drug therapy , Cats , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/drug therapy
3.
Comp Immunol Microbiol Infect Dis ; 94: 101962, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242265

ABSTRACT

Feline coronavirus (FCoV) is a highly contagious and ubiquitous virus of domestic cats and wild felids. Feline infectious peritonitis (FIP) is a fatal, systemic disease caused by FCoV infection when spontaneous mutations of the viral genome take place. The aims of this study were primarily to determine the prevalence of seropositivity for FCoV in different populations of cats in Greece and assess risk factors for seropositivity. A total of 453 cats were prospectively enrolled in the study. A commercially available IFAT kit was used for the detection of FCoV IgG antibodies in serum. Overall, 55 (12.1 %) of the 453 cats were seropositive for FCoV. Based on multivariable analysis, factors associated with FCoV-seropositivity included cats adopted as strays and contact with other cats. This is the first extensive study on the epidemiology of FCoV in cats from Greece and one of the largest worldwide. Feline coronavirus infection is relatively common in Greece. Therefore, it is necessary to establish optimal strategies for the prevention of FCoV infection, considering the high-risk groups of cats identified in this study.


Subject(s)
Cat Diseases , Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Seroepidemiologic Studies , Greece , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/diagnosis , Coronavirus, Feline/genetics , Risk Factors
4.
Virus Res ; 326: 199059, 2023 03.
Article in English | MEDLINE | ID: covidwho-2221478

ABSTRACT

Feline coronavirus (FCoV) includes two biotypes: feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). Although both biotypes can infect cats, their pathogenicities differ. The FIPV biotype is more virulent than the FECV biotype and can cause peritonitis or even death in cats, while most FECV biotypes do not cause lesions. Even pathogenic strains of the FECV biotype can cause only mild enteritis because of their very low virulence. This article reviews recent progress in FCoV research with regard to FCoV etiological characteristics; epidemiology; clinical symptoms and pathological changes; pathogenesis; and current diagnosis, prevention and treatment methods. It is hoped that this review will provide a reference for further research on FCoV and other coronaviruses.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Coronavirus, Feline/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/diagnosis
6.
Arch Razi Inst ; 77(5): 1709-1714, 2022 10.
Article in English | MEDLINE | ID: covidwho-2006668

ABSTRACT

Feline coronavirus (FCoV) is an enveloped single-stranded RNA virus, affecting wild and domestic cats. Feline infectious peritonitis viruses (FIPV) variants of FCoV cause fatal peritonitis affecting approximately 5% of FCoV infected animals. The present study aimed to detect and isolate the feline infectious peritonitis virus for the first time in Iraq. In this study, 50 samples (fecal swab and peritoneal fluid) were collected from suspected pet cats from different areas of Baghdad, Iraq. The very suitable age was under two years old.  Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) was used to detect Feline infectious peritonitis in infected collected samples by the amplification of spike protein (S). The result of real-time RT-PCR revealed that out of 50 samples from suspected cats, 10 samples were positive for FIPV. Moreover, 10 positive samples by real-time RT-PCR were used for the isolation of the virus in chicken embryo fibroblast cell culture. Subsequently, the isolated virus was detected by real-time RT-PCR and then by conventional RT-PCR, followed by electrophoresis.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Chick Embryo , Animals , Cats , Feline Infectious Peritonitis/diagnosis , Coronavirus, Feline/genetics , Real-Time Polymerase Chain Reaction/veterinary , Iraq
7.
Viruses ; 14(8)2022 07 29.
Article in English | MEDLINE | ID: covidwho-1969503

ABSTRACT

(1) Background: This study aimed to detect feline coronavirus (FCoV) and characterize spike (S) gene mutation profiles in cats suffering from diseases other than feline infectious peritonitis (FIP) using commercial real-time reverse transcription polymerase chain reaction (RT-qPCR) and reevaluating results by sequencing. (2) Methods: In 87 cats in which FIP was excluded by histopathology and immunohistochemistry, FCoV 7b gene and S gene mutation RT-qPCR was performed prospectively on incisional biopsies and fine-needle aspirates of different organs, body fluids, and feces. Samples positive for S gene mutations or mixed FCoV underwent sequencing. (3) Results: In 21/87 cats, FCoV RNA was detectable. S gene mutations were detected by commercial RT-qPCR (and a diagnostic algorithm that was used at the time of sample submission) in at least one sample in 14/21 cats (66.7%), with only mutated FCoV in 2/21, only mixed in 1/21, and different results in 11/21 cats; in the remaining 7/21 cats, RNA load was too low to differentiate. However, sequencing of 8 tissue samples and 8 fecal samples of 9 cats did not confirm mutated FCoV in any of the FCoV RNA-positive cats without FIP. (4) Conclusions: Sequencing results did not confirm results of the commercial S gene mutation RT-qPCR.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Coronavirus, Feline/genetics , Feces , Feline Infectious Peritonitis/diagnosis , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction
8.
Viruses ; 14(4)2022 04 01.
Article in English | MEDLINE | ID: covidwho-1776355

ABSTRACT

Feline infectious peritonitis (FIP) is a systemic immune-mediated inflammatory perivasculitis that occurs in a minority of cats infected with feline coronavirus (FCoV). Various therapies have been employed to treat this condition, which was previously usually fatal, though no parameters for differentiating FIP recovery from remission have been defined to enable clinicians to decide when it is safe to discontinue treatment. This retrospective observational study shows that a consistent reduction of the acute phase protein alpha-1 acid glycoprotein (AGP) to within normal limits (WNL, i.e., 500 µg/mL or below), as opposed to duration of survival, distinguishes recovery from remission. Forty-two cats were diagnosed with FIP: 75% (12/16) of effusive and 54% (14/26) of non-effusive FIP cases recovered. Presenting with the effusive or non-effusive form did not affect whether or not a cat fully recovered (p = 0.2). AGP consistently reduced to WNL in 26 recovered cats but remained elevated in 16 cats in remission, dipping to normal once in two of the latter. Anaemia was present in 77% (23/30) of the cats and resolved more quickly than AGP in six recovered cats. The presence of anaemia did not affect the cat's chances of recovery (p = 0.1). Lymphopenia was observed in 43% (16/37) of the cats and reversed in nine recovered cats but did not reverse in seven lymphopenic cats in the remission group. Fewer recovered cats (9/24: 37%) than remission cats (7/13: 54%) were lymphopenic, but the difference was not statistically different (p = 0.5). Hyperglobulinaemia was slower than AGP to return to WNL in the recovered cats. FCoV antibody titre was high in all 42 cats at the outset. It decreased significantly in 7 recovered cats but too slowly to be a useful parameter to determine discontinuation of antiviral treatments. Conclusion: a sustained return to normal levels of AGP was the most rapid and consistent indicator for differentiating recovery from remission following treatment for FIP. This study provides a useful model for differentiating recovery from chronic coronavirus disease using acute phase protein monitoring.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Orosomucoid , Acute-Phase Proteins , Animals , Cats , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/therapy , Orosomucoid/metabolism
9.
Viruses ; 12(11)2020 10 27.
Article in English | MEDLINE | ID: covidwho-895406

ABSTRACT

This is the first report of a successful treatment of a non-effusive feline infectious peritonitis (FIP) uveitis case using an oral adenosine nucleoside analogue drug and feline interferon omega, and alpha-1 acid glycoprotein (AGP) as an indicator of recovery. A 2-year-old male neutered Norwegian Forest Cat presented with uveitis, keratic precipitates, mesenteric lymphadenopathy and weight loss. The cat was hypergammaglobulinaemic and had a non-regenerative anaemia. Feline coronavirus (FCoV) RNA was detected in a mesenteric lymph node fine-needle aspirate by a reverse-transcriptase polymerase chain reaction-non-effusive FIP was diagnosed. Prednisolone acetate eye drops were administered three times daily for 2 weeks. Oral adenosine nucleoside analogue (Mutian) treatment started. Within 50 days of Mutian treatment, the cat had gained over one kilogram in weight, his globulin level reduced from 77 to 51 g/L and his haematocrit increased from 22 to 35%; his uveitis resolved and his sight improved. Serum AGP level reduced from 3100 to 400 µg/mL (within normal limits). Symmetric dimethylarginine (SDMA) was above normal at 28 µg/dL, reducing to 14 µg/dL on the cessation of treatment; whether the SDMA increase was due to FIP lesions in the kidney or Mutian is unknown. Mutian treatment stopped and low-dose oral recombinant feline interferon omega begun-the cat's recovery continued.


Subject(s)
Adenosine/therapeutic use , Feline Infectious Peritonitis/drug therapy , Interferon Type I/therapeutic use , Nucleosides/therapeutic use , Uveitis/drug therapy , Uveitis/veterinary , Adenosine/analogs & derivatives , Animals , Antiviral Agents/therapeutic use , Arginine/analogs & derivatives , Arginine/blood , Cats , Coronavirus, Feline/drug effects , Coronavirus, Feline/isolation & purification , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/virology , Glycoproteins/metabolism , Male , Uveitis/diagnosis
10.
Vet Clin North Am Small Anim Pract ; 50(5): 1001-1011, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-827004

ABSTRACT

Feline infectious peritonitis (FIP) is a mysterious and lethal disease of cats. The causative agent, feline coronavirus (FCoV), is ubiquitous in most feline populations, yet the disease is sporadic in nature. Mutations in the infecting virus combined with an inappropriate immune response to the FCoV contribute to the development of FIP. Diagnosis can be challenging because signs may be vague, clinical pathology parameters are nonspecific, and the gold standard for diagnosis is invasive: histopathology of affected tissue. This article discusses the developments in the understanding of this disease as well as the progress in diagnosis and treatment.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis/virology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/therapeutic use , Animals , Antiviral Agents/therapeutic use , Cats , Coronavirus, Feline/genetics , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/pathology , Feline Infectious Peritonitis/therapy , Genetic Predisposition to Disease , Pyrrolidines/therapeutic use , Sulfonic Acids
11.
J Virol Methods ; 286: 113979, 2020 12.
Article in English | MEDLINE | ID: covidwho-786045

ABSTRACT

Feline coronaviruses (FCoV) are members of the alphacoronavirus genus that are further characterized by serotype (types I and II) based on the antigenicity of the spike (S) protein and by pathotype based on the associated clinical conditions. Feline enteric coronaviruses (FECV) are associated with the vast majority of infections and are typically asymptomatic. Within individual animals, FECV can mutate and cause a severe and usually fatal disease called feline infectious peritonitis (FIP), the leading infectious cause of death in domestic cat populations. There are no approved antiviral drugs or recommended vaccines to treat or prevent FCoV infection. The plaque reduction neutralization test (PRNT) traditionally employed to assess immune responses and to screen therapeutic and vaccine candidates is time-consuming, low-throughput, and typically requires 2-3 days for the formation and manual counting of cytolytic plaques. Host cells are capable of carrying heavy viral burden in the absence of visible cytolytic effects, thereby reducing the sensitivity of the assay. In addition, operator-to-operator variation can generate uncertainty in the results and digital records are not automatically created. To address these challenges we developed a novel high-throughput viral microneutralization assay, with quantification of virus-infected cells performed in a plate-based image cytometer. Host cell seeding density, microplate surface coating, virus concentration and incubation time, wash buffer and fluorescent labeling were optimized. Subsequently, this FCoV viral neutralization assay was used to explore immune correlates of protection using plasma from naturally FECV-infected cats. We demonstrate that the high-throughput viral neutralization assay using the Celigo Image Cytometer provides a robust and efficient method for the rapid screening of therapeutic antibodies, antiviral compounds, and vaccines. This method can be applied to various viral infectious diseases to accelerate vaccine and antiviral drug discovery and development.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Feline/isolation & purification , High-Throughput Screening Assays/veterinary , Image Cytometry/methods , Neutralization Tests/methods , Animals , Cat Diseases/diagnosis , Cat Diseases/virology , Cats , Cell Line , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/virology , High-Throughput Screening Assays/methods , Image Cytometry/veterinary , Neutralization Tests/veterinary , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL